
Rivus Security Review
Pashov Audit Group

Conducted by: 0xunforgiven, 0xbepresent, peanuts
May 13th 2024 - May 17th 2024

Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Rivus
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Critical Findings
[C-01] Unlimited token transfer
[C-02] Function rebase() apply wrong APR in RivusTAO

8.2. High Findings
[H-01] Slashing isn't supported in the rebasing
mechanism

8.3. Medium Findings
[M-01] The fee calculation is inconsistent
[M-02] APR won't be applied precisely

8.4. Low Findings
[L-01] Use payable.call instead of payable.send
[L-02] Excess msg.value is not refunded to the user
[L-03] Fee calculation is different when converting token
to rsToken and back
[L-04] The wrap() and requestUnstake() functions do not
specify the minimum expected amount
[L-05] The verification of minStakingAmt is performed
before fees are deducted
[L-06] User role hasTokenSafePullRole can withdraw
wrappedToken
[L-07] totalRsTAOMinted may exceed cap

1

3

3

3

3

4

4
4
5

5

6

9

9

9

10

12

12

13

13

15

17

17

17

17

18

19

20

21

[L-08] Wrong formula in function
getWTAOByrsTAOAfterFee()
[L-09] maxUnstakeRequests is not validated when
unstakeRequests are reused

2

22

22

1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the rivus-comai-contracts and rivusDAO-
contract repositories was done by Pashov Audit Group, with a focus on the
security aspects of the application's smart contracts implementation.

4. About Rivus
Rivus DAO offers a liquid staking solution through rsTAO, in which users can earn
staking rewards while staying on the Ethereum Network. LSTs can be used as
collateral in DeFi activities and at the same time earn stakes for it.

3

https://github.com/pashov/audits
https://twitter.com/pashovkrum

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

4

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hashes:

fe259d9
15f8444

fixes review commit hash - 49967a9402ecfd761bbb94bb17886d1e291814b6

Scope

The following smart contracts were in scope of the audit:

rsCOMAI

rsTAO

RivusCOMAI

RivusTAO

5

https://github.com/cryptoLteam/rivus-comai-contracts
https://github.com/cryptoLteam/rivusDAO-contract
https://github.com/cryptoLteam/rivus-contract-audit/tree/49967a9402ecfd761bbb94bb17886d1e291814b6

7. Executive Summary
Over the course of the security review, 0xunforgiven, 0xbepresent, peanuts engaged
with Rivus to review Rivus. In this period of time a total of 14 issues were
uncovered.

Protocol Summary
Protocol Name Rivus

Repository https://github.com/cryptoLteam/rivus-contract-audit

Date May 13th 2024 - May 17th 2024

Protocol Type Liquid Staking Derivatives Protocol

Findings Count
Severity Amount

Critical 2

High 1

Medium 2

Low 9

Total Findings 14

6

Summary of Findings
ID Title Severity Status

[C-01] Unlimited token transfer Critical Resolved

[C-02] Function rebase() apply wrong APR
in RivusTAO Critical Resolved

[H-01] Slashing isn't supported in the
rebasing mechanism High Resolved

[M-01] The fee calculation is inconsistent Medium Acknowledged

[M-02] APR won't be applied precisely Medium Resolved

[L-01] Use payable.call instead of
payable.send Low Resolved

[L-02] Excess msg.value is not refunded to
the user Low Resolved

[L-03] Fee calculation is different when
converting token to rsToken and back Low Resolved

[L-04]
The wrap() and requestUnstake()
functions do not specify the minimum
expected amount

Low Acknowledged

[L-05] The verification of minStakingAmt is
performed before fees are deducted Low Resolved

[L-06] User role hasTokenSafePullRole can
withdraw wrappedToken Low Acknowledged

[L-07] totalRsTAOMinted may exceed cap Low Resolved

[L-08] Wrong formula in function
getWTAOByrsTAOAfterFee() Low Resolved

7

[L-09] maxUnstakeRequests is not validated
when unstakeRequests are reused Low Resolved

8

8. Findings

8.1. Critical Findings

[C-01] Unlimited token transfer

Severity
Impact: High

Likelihood: High

Description
Function getSharesByMintedRsTAO() has been used to calculate amount of
shares that corresponds to the RsTAO amount and it's been used in multiple
functions like _transfer() and _mintRsTAO() . The issue is that the function
getSharesByMintedRsTAO() returns 0 when the total minted amount is 0 while
it should have returned the amount itself. This has multiple impacts like
transferring unlimited tokens while the total mint is 0, this is the POC:

1. Suppose RivusTAO is recently deployed or for other reasons (upgrade or ...)
the total amount is zero.

2. Now attacker can transfer unlimited tokens to 3rd party contracts like DEX
or lending platforms and credit tokens for himself.

3. This is possible because when RivusTAO wants to transfer tokens in the
_transfer() it would call getSharesByMintedRsTAO() to calculate the share
amount and the share amount would be 0, so the code would have no
problem transferring 0 shares.

4. In the end the 3rd party contract would charge the user account while in
reality, it didn't receive any tokens. The transferFrom() call would return
true and won't revert.

There are other impacts. Function _mintRsTAO() uses
getSharesByMintedRsTAO() too and when the return amount is 0 then the code
uses amount to mint shares. The issue is that the return amount of

9

getSharesByMintedRsTAO() can be 0 because of the rounding error (small
values of amount) and the code should have minted 0 shares while it would
mint >0 shares. This can be used to extract value from contracts with small
deposit amounts while the share price is high.

This issue exists for rsCOMAI and RivusCOMAI contracts too.

Recommendations
When the total minted tokens are 0 then the code should return amount in
getSharesByMintedRsTAO() . The function getMintedRsTAOByShares() should
be fixed too. Those fixes should be applied to COMAI contracts too.

[C-02] Function rebase() apply wrong APR
in RivusTAO

Severity
Impact: High

Likelihood: High

Description
The function rebase() is supposed to apply daily APR to the share price by
decreasing the total share amount. The issue is that the code uses
totalSharesAmount * apr to calculate burnAmount so the burned amount
would be bigger than what it should be. This is the POC:

1. Suppose there are 100 shares and 100 tokens.
2. Admin wants to apply a 20% increase for one day.
3. Code would calculate the burn amount as 100 * 20% = 20 and the new total

share would be 80.
4. Now the token to share price would be 100/80 = 1.25 and as you can see

the ratio increases by 25%.
5. This would cause a wrong reward rate and those who withdraw sooner

would steal others tokens.

Recommendations
10

Code should use totalSharesAmount * apr / (1 +apr) to calculate the burn
amount.

11

8.2. High Findings

[H-01] Slashing isn't supported in the
rebasing mechanism

Severity
Impact: High

Likelihood: Medium

Description
The function rebase() has been used to increase the share price and apply
staking rewards. The issue is that staking has its own risks and stake amounts
can be slashed (In Commume or Bittensor network) and current logic doesn't
support decreasing the share price. Also, some tokens can be stolen or lost
when bridging so it would be necessary to have the ability to decrease the
share price to adjust the share price according to those events.

Recommendations
Add the ability to decrease the share price too.

12

8.3. Medium Findings

[M-01] The fee calculation is inconsistent

Severity
Impact: Medium

Likelihood: Medium

Description
The RivusCOMAIN::approveMultipleUnstakes function allows users with the
hasApproveWithdrawalRole role to approve requestUnstake requests and
send the requested wCOMAIN assets. Users can then call the
RivusCOMAIN::unstake function to receive the corresponding wCOMAIN tokens.

The issue arises because fees can change between the approval of
requestUnstake and when users perform unstake , affecting the actual
amount required. Consider the following scenario:

1. A requestUnstake for 1 wCOMAI in exchange for 1 rsCOMAI is made.
2. The manager approves the request and calculates the wCOMAI amount

required to be sent to the contract using the getWCOMAIByrsCOMAIAfterFee
function in line RivusCOMAI#L724 :

13

File: RivusCOMAI.sol
681: function approveMultipleUnstakes(UserRequest[] calldata requests)
682: public
683: hasApproveWithdrawalRole
684: nonReentrant
685: checkPaused
686: {
...
...
702: // Loop through each request to unstake and check if the request is
// valid
703: for (uint256 i = 0; i < requests.length; i++) {
...
...
724: (
 uint256wcomaiAmt,
 ,
 uint256unstakingFeeAmt
) = getWCOMAIByrsCOMAIAfterFee(unstakeRequests[request.user][request.requestIndex].com
725:
 totalRequiredComaiAmt = totalRequiredComaiAmt + wcomaiAmt + unstakingFeeAmt;
726: }
...
...
741: // Transfer the COMAI from the withdrawal manager to this contract
742: require(
743: IERC20(commonWrappedToken).transferFrom(
744: msg.sender,
745: address(this),
746: totalRequiredComaiAmt
747:),
748: "comaiAmt transfer failed"
749:);
...
...
760: }

File: RivusCOMAI.sol
476: function getWCOMAIByrsCOMAIAfterFee(uint256 rsCOMAIAmount)
477: public
478: view
479: returns (uint256, uint256, uint256)
480: {
481: uint256 unstakingFeeAmt = rsCOMAIAmount * unstakingFee / 1000;
482: uint256 bridgingFeeAmt = rsCOMAIAmount * bridgingFee / 1000;
483: if(bridgingFeeAmt < 1 * (10 ** decimals())) bridgingFeeAmt = 1 *
 (10 ** decimals());
484:
 uint256 unstakingAmt = rsCOMAIAmount - bridgingFeeAmt - unstakingFeeAmt;
485: return (unstakingAmt, bridgingFeeAmt, unstakingFeeAmt);
486: }

3. Fees are then changed using the RivusCOMAI::setUnstakingFee and
RivusCOMAI::setBridgingFee functions.

4. The user with the approved requestUnstake calls the RivusCOMAI::unstake
function, which again calls the getWCOMAIByrsCOMAIAfterFee function in
line RivusCOMAI#L781 , resulting in different fees due to the changes made in
step 3 :

14

File: RivusCOMAI.sol
770: function unstake(uint256 requestIndex) public nonReentrant checkPaused {
771:
772: require(
773: requestIndex < unstakeRequests[msg.sender].length,
774: "Invalid request index"
775:);
776:
 UnstakeRequest memory request = unstakeRequests[msg.sender][requestIndex];
777: require(request.amount > 0, "No unstake request found");
778: require(request.isReadyForUnstake, "Unstake not approved yet");
779:
780: // Transfer wCOMAI tokens back to the user
781: (
 uint256amountToTransfer,
 ,
 uint256unstakingFeeAmt
) = getWCOMAIByrsCOMAIAfterFee(request.comaiAmt
782: _transferToVault(address(this), unstakingFeeAmt);
783:
784: // Update state to false
785: delete unstakeRequests[msg.sender][requestIndex];
786:
787: // Perform ERC20 transfer
788: bool transferSuccessful = IERC20(request.wrappedToken).transfer(
789: msg.sender,
790: amountToTransfer
791:);
792: require(transferSuccessful, "wCOMAI transfer failed");
793:
794: // Process the unstake event
795: emit UserUnstake(msg.sender, requestIndex, block.timestamp);
796: }

5. The amount transferred to the user may be incorrect due to the fee changes,
leading to insufficient wCOMAI deposited by the manager in step 2 .

This inconsistency can cause some unstake operations to fail because the
correct amount of wCOMAI was not deposited into the RivusCOMAI contract via
approveMultipleUnstakes() .

Recommendations
It is recommended to calculate the fees and wrapped token amounts during the
RivusCOMAI::requestUnstake function, similar to how it is done in
RivusTAO::requestUnstake#L572 . This way, the same wCOMAI and
unstakingFees values are used consistently in both the
approveMultipleUnstakes() and unstake() functions.

[M-02] APR won't be applied precisely

Severity
15

Impact: Medium

Likelihood: Medium

Description
The function rebase() handles the share price increase to apply the desired
APR. The issue is that the code doesn't use lastRebaseTime when calculating
rate increase and it assumes 24 hours have passed from the last time which
couldn't not be the case. This would wrong APR for some of the time. For
example if rebase() is called 1 hour sooner or later then for those 1 hour the
share price rate would be wrong.

Recommendations
Use duration = block.timestamp - lastRebaseTime to calculate the real rate
increase that accrued from the last rebase call.

16

8.4. Low Findings

[L-01] Use payable.call instead of
payable.send

In RivusCOMAI.sol , payable.send is used when sending the serviceFee to the
withdrawalManager.

// in the guard condition at start of function
 bool success = payable(withdrawalManager).send(serviceFee);

Any smart contract that uses send() is taking a hard dependency on gas costs
by forwarding a fixed amount of gas: 2300. If gas costs are subject to change,
then smart contracts can’t depend on any particular gas costs.

Use payable(withdrawalManager){value: serviceFee}.call("") instead.

[L-02] Excess msg.value is not refunded to
the user

When the user calls requestUnstake() , msg.value is required as part of the
payment for serviceFee. However, if the user sends more msg.value than
required, then the excess value will be stuck in the contract.

// Ensure that the fee amount is sufficient
 require(msg.value >= serviceFee, "Fee amount is not sufficient");

Recommend having a strict equality check instead.

[L-03] Fee calculation is different when
converting token to rsToken and back

When converting wToken to rsToken, the fee is calculated as such:

17

function calculateAmtAfterFee(uint256 wcomaiAmount)
 ...
 uint256 _bridgeFee = wcomaiAmount * bridgingFee / 1000;
 if(_bridgeFee < 1 * (10 ** decimals())) _bridgeFee = 1 * (10 ** decimals());
 uint256 amountAfterBridgingFee = wcomaiAmount - _bridgeFee;
 uint256 feeAmount = 0;
 if(stakingFee > 0) {
 feeAmount = (amountAfterBridgingFee * stakingFee) / 1000;
 }
 uint256 amountAfterTotalFees = amountAfterBridgingFee - feeAmount;
 }

The total amount deducts the bridging fee and then the new amount deducts
the staking fee.

When unstaking, the bridging fee and unstaking fee are calculated on the total
amount.

function getWCOMAIByrsCOMAIAfterFee(uint256 rsCOMAIAmount)
 public
 view
 returns (uint256, uint256, uint256)
 {
 uint256 unstakingFeeAmt = rsCOMAIAmount * unstakingFee / 1000;
 uint256 bridgingFeeAmt = rsCOMAIAmount * bridgingFee / 1000;
 if(bridgingFeeAmt < 1 * (10 ** decimals())) bridgingFeeAmt = 1 *
 (10 ** decimals());
 uint256 unstakingAmt = rsCOMAIAmount - bridgingFeeAmt - unstakingFeeAmt;
 return (unstakingAmt, bridgingFeeAmt, unstakingFeeAmt);
 }

This means that the fee calculation is different when staking and unstaking.
Users will pay a little less fee when staking given staking and unstaking
percentage is the same.

For example, if both staking and unstaking are 1% and the bridge is 1%, a user
with 1000 tokens will pay 10 tokens for unstaking and 10 tokens for the bridge
fee, whereas the user will pay 10 tokens for the bridge fee and 9.9 tokens for
staking.

Standardize the way the fee calculation is.

[L-04] The wrap() and requestUnstake()
functions do not specify the minimum
expected amount

18

The exchangeRate , stakingFees , and bridgingFees can change before the
transactions for the wrap() and requestUnstake() functions are executed, due
to the nature of blockchain and transaction order under incentives. This can
result in users receiving fewer assets than expected.

It is necessary to include parameters in the wrap() and requestUnstake()
functions of the RivusTAO.sol and RivusCOMAI.sol contracts to specify the
minimum expected amount in the exchange.

[L-05] The verification of minStakingAmt is
performed before fees are deducted

The RivusTAO::wrap function checks if the wTAO amount exceeds the
minStakingAmt before fees are subtracted:

File: RivusTAO.sol
887: function wrap
 (uint256 wtaoAmount) public nonReentrant checkPaused returns (uint256) {
...
...
918: // Ensure that at least 0.125 TAO is being bridged
919: // based on the smart contract
920: require
 (wtaoAmount > minStakingAmt, "Does not meet minimum staking amount");
921:
922:
923: // Ensure that the wrap amount after free is more than 0
924: (uint256 wrapAmountAfterFee, uint256 feeAmt) = calculateAmtAfterFee
 (wtaoAmount);
925:
926: uint256 rsTAOAmount = getRsTAObyWTAO(wrapAmountAfterFee);
...
...
939: }

This approach is flawed as it should ensure that the net amount after fees,
which is actually being staked, meets the minStakingAmt . Performing the
check prior to fee deductions can lead to scenarios where the actual staked
amount is less than the intended minimum due to the fees subtracted afterward.

Adjust the validation process to check minStakingAmt after the fees have been
calculated and deducted from the wTAO amount. This ensures that the amount
effectively being staked still meets the minimum requirements stipulated by
the protocol, preventing users from staking less than the minimum due to fees.

19

function wrap(uint256 wtaoAmount) public nonReentrant checkPaused returns
 (uint256) {
 ...
 ...

-- // Ensure that at least 0.125 TAO is being bridged
-- // based on the smart contract
-- require(wtaoAmount > minStakingAmt, "Does not meet minimum staking amount");

 // Ensure that the wrap amount after free is more than 0
 (uint256 wrapAmountAfterFee, uint256 feeAmt) = calculateAmtAfterFee
 (wtaoAmount);

++ // Ensure that at least 0.125 TAO is being bridged
++ // based on the smart contract
++ require
+ (wrapAmountAfterFee > minStakingAmt, "Does not meet minimum staking amount");

 uint256 rsTAOAmount = getRsTAObyWTAO(wrapAmountAfterFee);
 ...
 ...
 }

[L-06] User role hasTokenSafePullRole can
withdraw wrappedToken

The safePullERC20() function is designed to allow the withdrawal of tokens
from the contract by authorized users:

File: RivusTAO.sol
941:
942: function safePullERC20(
943: address tokenAddress,
944: address to,
945: uint256 amount
946:) public hasTokenSafePullRole checkPaused {
947: _requireNonZeroAddress(to, "Recipient address cannot be null address");
948:
949: require(amount > 0, "Amount must be greater than 0");
950:
951: IERC20 token = IERC20(tokenAddress);
952: uint256 balance = token.balanceOf(address(this));
953: require(balance >= amount, "Not enough tokens in contract");
954:
955: // "to" have been checked to be a non zero address
956: bool success = token.transfer(to, amount);
957: require(success, "Token transfer failed");
958: emit ERC20TokenPulled(tokenAddress, to, amount);
959: }

However, this function also allows the withdrawal of wrappedTokens (e.g.,
wTAO or wCOMAI), which should remain in the contract as they are assets
deposited via the approveMultipleUnstakes() function and are intended to be
available for users when they execute unstake() . Allowing the

20

safePullERC20 function to withdraw wrappedTokens can lead to misuse of the
protocol's assets, as these tokens are essential for fulfilling user unstake
requests.

To prevent unauthorized withdrawal of essential assets, the safePullERC20
function should be restricted to exclude wrappedTokens . This ensures that the
tokens meant for user unstake requests remain available. Alternatively, ensure
that the approved amounts for unstake are not eligible for withdrawal through
the safePullERC20 function, thus maintaining the integrity of the assets
needed for user operations.

[L-07] totalRsTAOMinted may exceed cap
The cap variable is intended to limit the total supply of rsTAO and rsCOMAI ,
and is checked in the wrap() function to ensure that the total minted does not
exceed this cap:

File: RivusTAO.sol
887: function wrap
 (uint256 wtaoAmount) public nonReentrant checkPaused returns (uint256) {
...
...
894: require(
895: cap >= totalRsTAOMinted,
896: "Deposit amount exceeds maximum"
897:);
...
...

However, the current implementation allows the cap to be exceeded under
certain conditions. Consider the following scenario:

1. The cap is set to 10 and totalRsTAOMinted is 9 .
2. A user performs a wrap() operation that would mint 30 rsTAO , resulting in

totalRsTAOMinted becoming 39 , thereby exceeding the cap of 10 .

This can happen because the cap check is performed before the new rsTAO is
minted and added to the totalRsTAOMinted .

It is advisable to adjust the validation logic to include the amount of rsTAO to
be minted in the cap check. This can be done by moving the cap check to after
the calculation of rsTAO to be minted. This ensures the cap is not exceeded
after new tokens are minted:

21

function wrap(uint256 wtaoAmount) public nonReentrant checkPaused returns
 (uint256) {
 ...
 ...
-- require(
-- cap >= totalRsTAOMinted,
-- "Deposit amount exceeds maximum"
--);
 ...
 ...
 uint256 rsTAOAmount = getRsTAObyWTAO(wrapAmountAfterFee);

 // Perform token transfers
 _mintRsTAO(msg.sender, rsTAOAmount);
++ require(
++ cap >= totalRsTAOMinted,
++ "Deposit amount exceeds maximum"
++);
 ...
 ...
 }

[L-08] Wrong formula in function
getWTAOByrsTAOAfterFee()

In the function getWTAOByrsTAOAfterFee() code should calculate wTAO
amount and then subtract the unstakingFee from it. This won't cause an issue
in the current code because the ratio is 1 but in general the formula is wrong.
The issue exists in COMAI contracts too.

[L-09] maxUnstakeRequests is not validated
when unstakeRequests are reused

The maxUnstakeRequests variable helps limit the number of unstakeRequests
a user can have. This variable is validated in the requestUnstake() function in
lines RivusTAO#L607-609 :

22

File: RivusTAO.sol
555: function requestUnstake
 (uint256 rsTAOAmt) public payable nonReentrant checkPaused {
...
...
606: if (!added) {
607: require(
608: unstakeRequests[msg.sender].length < maxUnstakeRequests,
609: "Maximum unstake requests exceeded"
610:);
611: unstakeRequests[msg.sender].push(
612: UnstakeRequest({
613: amount: rsTAOAmt,
614: taoAmt: outWTaoAmt,
615: isReadyForUnstake: false,
616: timestamp: block.timestamp,
617: wrappedToken: wrappedToken
618: })
619:);
...
629: }
...
...
638: }

The problem is that maxUnstakeRequests can be modified via the
setMaxUnstakeRequest() function, causing this variable validation to not work
as expected. Consider the following scenario:

1. The owner calls setMaxUnstakeRequest() with a value of 2 .
2. Account1 deposits 10e9 wTAO tokens , obtaining 10e9 rsTAO tokens .
3. For some reason, Account1 performs an unstaking of 1e9 rsTAO and

another of 2e9 rsTAO , obtaining 3e9 wTAO - fees .
4. The owner modifies setMaxUnstakeRequest() and decreases it to a value of

1 .
5. Account1 performs another unstaking of 3e9 rsTAO and 4e9 rsTAO in

separate transactions, resulting in Account1 having 2 requestStaking . This
is incorrect as Account1 should be limited to only 1 requestUnstaking
since maxUnstakeRequests was decreased in step 4 .

The following test demonstrates the previous scenario:

23

it(
 "maxUnstakeRequestsisnotusedwhenuserhavealreadyunstakeRequests",
 asyncfunction
) {
 // setup

 await wTAO.setBridge(owner.address)
 const froms = ["from0", "from1", "from1", "from1"]

 const tos = [owner.address, account1.address, account2.address, account3.
 const amounts = [
 ethers.parseUnits("100", 9),
 ethers.parseUnits("10", 9),
 ethers.parseUnits("10", 9),
 ethers.parseUnits("10", 9)]
 await wTAO.bridgedTo(froms, tos, amounts)
 console.log("\nAccount1 wTAO balance: ", ethers.formatUnits
 (await wTAO.balanceOf(account1.address), 9))
 console.log("Account1 rsTAO balance: ", ethers.formatUnits
 (await rsTAO.balanceOf(account1.address), 9))
 //
 // 1. Owner set max unstakeRequest to 2 just for the testing purposes
 await rsTAO.setMaxUnstakeRequest(2);
 //
 // 2. Account1 stakes wTAO
 let amountToStake = ethers.parseUnits("10", 9);
 console.log("\nStaking", ethers.formatUnits(amountToStake, 9), "wTAO...")
 await wTAO.connect(account1).approve(rsTAO.target, amountToStake)
 await rsTAO.connect(account1).wrap(amountToStake)
 console.log("Account1 wTAO balance: ", ethers.formatUnits
 (await wTAO.balanceOf(account1.address), 9))
 console.log("Account1 rsTAO balance: ", ethers.formatUnits
 (await rsTAO.balanceOf(account1.address), 9))
 //
 // 3. Account1 request unstake 1 wTAO
 console.log("\nRequest unstake 1 wTAO...")
 await rsTAO.connect(account1).requestUnstake(ethers.parseUnits
 ("1", 9), {value: ethers.parseEther("0.003")});
 //
 // 4. Account1 request unstake 2 wTAO
 console.log("\nRequest unstake 2 wTAO...")
 await rsTAO.connect(account1).requestUnstake(ethers.parseUnits
 ("2", 9), {value: ethers.parseEther("0.003")});
 //
 // 5. Account1 unstake both `requestUnstakes`
 console.log("\nOwner approves all the `Account1` requestUnstake")
 const userRequests = [
 { user: account1.address, requestIndex: 0 },
 { user: account1.address, requestIndex: 1 }
];
 await wTAO.approve(rsTAO.target, ethers.parseUnits("10", 9))
 await rsTAO.approveMultipleUnstakes(userRequests);
 console.log("\nAccount1 unstake both requests")
 await rsTAO.connect(account1).unstake(0);
 await rsTAO.connect(account1).unstake(1);
 console.log("Account1 wTAO balance: ", ethers.formatUnits
 (await wTAO.balanceOf(account1.address), 9))
 console.log("Account1 rsTAO balance: ", ethers.formatUnits
 (await rsTAO.balanceOf(account1.address), 9))
 //
 // 6. Owner set max unstakeRequest to 1 but the account1 can still use 2
 // request unstakes
 await rsTAO.setMaxUnstakeRequest(1);
 console.log("\nRequest unstake 3 wTAO...")
 await rsTAO.connect(account1).requestUnstake(ethers.parseUnits
 ("1", 9), {value: ethers.parseEther("0.003")});
 console.log("\nRequest unstake 4 wTAO...")

24

 await rsTAO.connect(account1).requestUnstake(ethers.parseUnits
 ("2", 9), {value: ethers.parseEther("0.003")});
 let getUserRequests = await rsTAO.getUnstakeRequestByUser
 (account1.address);
 console.log(getUserRequests.length);
 });

It is recommended to ensure that maxUnstakeRequests is not exceeded within
the section where empty unstakeRequests are reused in lines RivusTAO#L577-
L602 .

File: RivusTAO.sol
555: function requestUnstake
 (uint256 rsTAOAmt) public payable nonReentrant checkPaused {
...
...
576: // Loop throught the list of existing unstake requests
577: for (uint256 i = 0; i < length; i++) {
578: uint256 currAmt = unstakeRequests[msg.sender][i].amount;
579: if (currAmt > 0) {
580: continue;
581: } else {
582: // If the curr amt is zero, it means
583: // we can add the unstake request in this index
584: unstakeRequests[msg.sender][i] = UnstakeRequest({
585: amount: rsTAOAmt,
586: taoAmt: outWTaoAmt,
587: isReadyForUnstake: false,
588: timestamp: block.timestamp,
589: wrappedToken: wrappedToken
590: });
591: added = true;
592: emit UserUnstakeRequested(
593: msg.sender,
594: i,
595: block.timestamp,
596: rsTAOAmt,
597: outWTaoAmt,
598: wrappedToken
599:);
600: break;
601: }
602: }
...
...

25

